Contributions of Actual and Simulated Satellite SAR Data for Substrate Type Differentiation and Shoreline Mapping in the Canadian Arctic
نویسندگان
چکیده
Detailed information on the land cover types present and the horizontal position of the land–water interface is needed for sensitive coastal ecosystems throughout the Arctic, both to establish baselines against which the impacts of climate change can be assessed and to inform response operations in the event of environmental emergencies such as oil spills. Previous work has demonstrated potential for accurate classification via fusion of optical and SAR data, though what contribution either makes to model accuracy is not well established, nor is it clear what shorelines can be classified using optical or SAR data alone. In this research, we evaluate the relative value of quad pol RADARSAT-2 and Landsat 5 data for shoreline mapping by individually excluding both datasets from Random Forest models used to classify images acquired over Nunavut, Canada. In anticipation of the RADARSAT Constellation Mission (RCM), we also simulate and evaluate dual and compact polarimetric imagery for shoreline mapping. Results show that SAR data is needed for accurate discrimination of substrates as user’s and producer’s accuracies were 5–24% higher for models constructed with quad pol RADARSAT-2 and DEM data than models constructed with Landsat 5 and DEM data. Models based on simulated RCM and DEM data achieved significantly lower overall accuracies (71–77%) than models based on quad pol RADARSAT-2 and DEM data (80%), with Wetland and Tundra being most adversely affected. When classified together with Landsat 5 and DEM data, however, model accuracy was less affected by the SAR data type, with multiple polarizations and modes achieving independent overall accuracies within a range acceptable for operational mapping, at 89–91%. RCM is expected to contribute positively to ongoing efforts to monitor change and improve emergency preparedness throughout the Arctic.
منابع مشابه
Determination of the displacement rate of the Masouleh landslide for management of landslide risk by Radar Interferometry
One of the most common natural phenomena occurring in mountainous regions of the world is landslide which causes critical damages and is considered as a natural disaster. Iran is a country which annually suffers from this disaster and its consequent damage of about 500 billion Rial. Over the last 15 years, an increasing number of researches have aimed to demonstrate the applicability of the im...
متن کاملA Comparative Study of Shoreline Mapping Techniques
Shorelines are critical information in a Coastal Geographic Information System (CGIS). Shorelines have a dynamic nature. Hence, their definition, mapping, and subsequent utilization are a more complicated issue than people usually think. Different approaches to shoreline mapping are described and analyzed in this paper. In particular, a new method is presented in which tide-coordinated shorelin...
متن کاملTime variations analysis of the Hormoz strait northern shoreline by using Digital Shoreline Analysis System (DSAS)
Extended abstract 1- Introduction Coastal systems are very dynamic, and their movement is relatively fast due to the collision of onshore and marine environment. The majority of the world's population is concentrated along with the coastal areas. Hormuz Strait coasts are affected by morphological variables due to the hydrodynamics of the sea and the dynamics of coastal and onshore environme...
متن کاملEvaluation of Sentinel-1 Interferometric SAR Coherence efficiency for Land Cover Mapping
In this study, the capabilities of Interferometric Synthetic Aperture Radar (InSAR) time series data and machine learning have been evaluated for land cover mapping in Iran. In this way, a time series of Sentinel-1 SAR data (including 16 SLC images with approximately 24 days time interval) from 2018 to 2020 were used for a region of Ahvaz County located in Khuzestan province. Using InSAR proces...
متن کاملLimitations and Potential of Satellite Imagery to Monitor Environmental Response to Coastal Flooding
RAMSEY, E. III; WERLE, D.; SUZUOKI, Y.; RANGOONWALA, A., and LU, Z., 2012. Limitations and potential of satellite imagery to monitor environmental response to coastal flooding. Journal of Coastal Research, 28(2), 457–476. West Palm Beach (Florida), ISSN 0749-0208. Storm-surge flooding and marsh response throughout the coastal wetlands of Louisiana were mapped using several types of remote sensi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017